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Local field probability distribution in random media
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We address the problem of the analytical determination of the local field distribution in random dielectrics.
This distribution was shown numerically to exhibit a double peak behavior. We have determined analytically
this distribution which is essentially the convolution of the distribution due to the first neighbors~i.e., the effect
of the microstructure! with a Gaussian distribution describing the background. Our results are in good agree-
ment with known numerical results.@S1063-651X~97!14209-X#

PACS number~s!: 05.40.1j, 61.43.2j, 77.90.1k
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I. INTRODUCTION

In the study of transport properties of disordered syste
~and for nonlinear disordered systems!, the random resisto
network~RRN! is of the utmost importance. First, it provide
a simple model for composite media such as conduc
dielectric mixtures and exhibits a percolation transition~in
the dc case!. Second, it can be generalized to a large num
of situations such as ac properties, optical properties,
~see for instance@1#!.

The main approach to this problem was to determine
effective conductivity of the network~see the review@2# and
references therein!. The effective medium concept is alread
an old one~one can find a historical review of effective m
dium in @3#! and consists in replacing the heterogeneous
dium by a homogeneous one with the same macrosc
conductivity~this is in general possible when the observat
length is greater than the disorder correlation length!. The
knowledge of the effective conductivity is equivalent to t
knowledge of the averaged electric field and is therefore
motely related to the microstructure of the medium. Mo
precisely, the usual effective medium theories neglect
microstructure by assuming a homogeneous local envi
ment. During the past few years, the effect of the rand
microstructure has been investigated~see, for example,@4#!.
One way to study this problem is to look at the moments
the electric field. This information is of interest in man
problems such as the weakly nonlinear composites~see
@5–7# and references therein!. Indeed, since the nonlinea
susceptibility is related to higher moments of the elec
field, it is much more sensitive to the fluctuations due to
microstructure. Moreover, in the random fuse problem~a
model for dielectric breakdown and for rupture in heterog
neous media!, the knowledge of the probability distributio
allows for the determination of very important quantiti
such as the macroscopic breakdown threshold~for a review
on fracture in disordered media, see, for example,@8#!. Most
of the approaches to these problem are based on nume
scaling, extreme statistics~Lifchitz defects!.

In spite of the importance of the subject there are v
few analyses of this problem; even the weak-disorder reg
is not well understood. We propose here a perturbative
561063-651X/97/56~3!/2835~6!/$10.00
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proach to the calculation of the full probability distribution
This approach could be used as a starting point for a str
disorder regime analysis. We determine analytically
probability distribution of the local field~which is the sum of
the fields seen by the particle!. In general, when an electri
field is applied on a dielectric, the local field differs from th
macroscopic field. This difference comes from the local e
vironment of the particle. However it is not difficult to com
pute the average of this local field. This average has b
first calculated by Lorentz and leads to the usual solution
the local field and to the Clausius-Mossotti relation@3#.
Since the local environment is random, one expects the lo
field to be random too. In 1991, Chen and Sheng@9# pro-
posed a numerical study of this problem~using a generalized
Onsager approach! and found a double peak distribution fo
the local field. This double peak structure was also fou
numerically in the context of the RRN@10#. It can be related
to the existence of two different environments relative to
applied field. We will return to the physical interpretation
this phenomenon. Up to now analytical efforts were made
the probability distribution tail~@11# and references therein!
but not on the full distribution. We propose here a perturb
tive approach to the calculation of the full probability distr
bution.

The layout of the paper is the following. In Sec. II, w
present the perturbative approach to the calculation of
probability distribution of the local electric field and com
pare it to previous numerical results. Section III summariz
the main conclusions of this work.

II. PERTURBATIVE STUDY OF THE PROBABILITY
DISTRIBUTION

A. Calculation

We present a perturbative approach for the calculation
the local field probability distribution. Note that the electr
field ~as will be shown below! is simply related to the loca
field.

We will show that this problem reduces to the calculati
of the probability distribution of a weighted sum of rando
variables. We then evaluate perturbatively the probabi
distribution of such a sum.
2835 © 1997 The American Physical Society
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2836 56MARC BARTHÉLÉMY AND HENRI ORLAND
We model here the random dielectric as a thr
dimensional cubic lattice~with spacing a51! where the
nodes are occupied randomly by polarizable particles~with
polarizability a!. We suppose that a particle is present w
probability p and absent with probability 12p. The polariz-
abilities a~r ! at r are independent~from site to site! random
variables distributed according to a binary law

P„a~r !…5pd„a~r !2a…1qd„a~r !…. ~1!

We apply a uniform and constant electric fieldE0 to this
dielectric medium. The local fieldEl(r i) at a pointr i is given
by the sum of all the fields created by the other dipoles~the
dipole r i is excluded from the sum!

El~r i !5E01 (
r jÞr i

Ĝ~r i2r j !p~r j !, ~2!

where the dipolar momentp(r i) at point r i is given by

p~r i !5a~r i !El~r i ! ~3!

and whereĜ is the dipolar tensor~in real space and forrÞ0!

Gmn~r !5
3r mr n2r 2dmn

r 5 ~4!

and Gmn(r 50)52dmn/3. The local field thus satisfies th
following integral equation:

El~r i !5E01 (
r jÞr i

Ĝ~r i2r j !a~r j !El~r j !. ~5!

The electric field is simply related to the local field b
E(r i)5El(r i)1G(0)a(r i)El(r i), whereEl(r ) and a~r ! are
independent random variables.

Equation~5! gives formally the local field as a function o
the disorder. It seems out of reach to solve exactly this eq
tion in order to extract the probability distribution of th
local field El . Due to translational invariance, the disord
averaged probability distribution is position independent a
we chooser i50 in Eq. ~5!. We study Eq.~5! perturbatively.
To first order ina, we have

El~0!.E01 (
r jÞ0

Ĝ~r j !a~r j !E0 . ~6!

At first sight, this approximation seems too simple but
will show that it is surprisingly accurate, at least for th
average field. To discuss this point, let us assume that
dielectric material has permittivitye0 and the particles have
a permittivitye. In this case, the polarizability atr reads~see,
for example,@3#!

a~r !5
3@e~r !2e0#

2e01e~r !
. ~7!

It is then easy to compute the average fluctuation of the t
field dE5E2E0.ā( rG(r )E0 to first order ina @where the
bar denotes the average over the distribution~1!#. This fluc-
-

a-

d

he

al

tuation should be equal to zero if we replace the surround
medium of permittivitye0 by an effective medium of per
mittivity e* . We find

e* 2e

11~e2e* /3e* !
50 ~8!

which is the well known Bruggeman formula@3#. This shows
that, at least for the average field, the approximation~6! is
not trivial and contains a lot of information. We also no
that this approximation consists of considering all dipo
polarized along the applied fieldE0 . The same approxima
tion, restricted to the first neighbors, was proposed in@9# in
order to justify the double peak character of the local fie
distribution. In the following, we will study Eq.~5! more
thoroughly without restricting ourselves to the first neig
bors.

We assume that the applied field is directed along thz
axis and we first look at thez component of the local fieldEl
denoted byEi . This component satisfies the equation

Ei5E01 (
r iÞ0

f ~r i !a~r i !E0 , ~9!

where

f ~r !5Gzz~r !5
3z22r 2

r 5 . ~10!

Equation ~9! is the basic equation we study here. Let
introduce the quantityY given by

Y5 (
r iÞ0

f ~r i !a~r i !. ~11!

The problem is thus reduced to the determination of
probability distribution of the quantityY. This quantity is the
sum of random binary variablesa~r ! weighted byf (r ) which
is a decreasing function ofr ~roughly like 1/r 3!. The quantity
Y remains distributed sincef decreases sufficiently rapidl
so that the central limit theorem~CLT! cannot apply. This is
easily seen by the following two extreme cases.~i! The quan-
tity f is local, for examplef is nonzero only for one value o
r . In this case,Y is equal~up to a constant! to a~r ! and will
therefore be a random binary variable.~ii ! The quantityf is
approximately constant. The CLT can therefore apply anY
will be distributed according to a Gaussian law with a re
tive dispersion varying like 1/AN, whereN is the number of
dipoles.

Our present case is intermediate, since at fixedr the num-
ber of dipoles is of orderr 2 and the total contribution of this
shell is of orderr 231/r 3;1/r , which is not integrable. Thus
sufficiently far away from the origin, the variable associat
to a shell is given by the CLT. We thus expect a contributi
due to the first shell~the first neighbors! and a Gaussian
contribution coming from all other shells. This is the cent
argument which allows us to study the probability distrib
tion of Y, namely,P(Y).

From Eq.~11!, the expression forP(Y) is
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56 2837LOCAL FIELD PROBABILITY DISTRIBUTION IN . . .
P~Y!5E dk

2p
eikY1(r iÞ0ln@pe2 ika f ~r i !1q#. ~12!

Let us note here that iff is constant the sum reduces to
factor N which allows us to use a saddle-point method a
leads to the usual Gaussian distribution~CLT!.

Following the preceding arguments, we divide the sum
two parts,

(
r iÞ0

ln@p2 ika f ~r i !1q#5 (
ur i u51

ln@p2 ika f ~r i !1q#

1 (
ur i u.1

ln@p2 ika f ~r i !1q#,

~13!

where the first sum of the right-hand side is over the first
neighbors. We keep this first sum in the integral and app
saddle-point method to the second sum. Let us briefly jus
this point. The second term can be written as

(
ur i u.1

ln@p2 ika f ~r i !1q#5 (
shells n

N~n!ln@p2 ika f n1q#,

~14!

where N(n) is the number of sites belonging to the sh
numbern ~we mean here by shell the positions in space
which f has a constant value! and wheref n is the value off
on this shell. We assume that all theseN(n) are sufficiently
large in order to enable the use of the saddle-point met
@N(n) is roughly varying liken2]. The saddle point is atk
50. This leads to

P~Y!.E dk

2p
~pe2 ika f 11q!4~pe2 ika f 21q!2

3eikY2~k2/2!m28pq, ~15!

where

m285 (
ur i u.1

@ f ~r i !#2 ~16!

and f 1521 is the value ofGzz for the four dipoles in the
plane perpendicular to thez axis andf 252 is the value of
Gzz for the two first neighbors on thez axis. The fact thatf 1
and f 2 have different signs explains the double peak char
ter of P(Y). Indeed, the local environment comprisin
mainly dipoles in the (x,y) plane will produce a negative
field and therefore a value of the local field lower than
average. On the other hand, the local microstructure with
dipoles on thez axis will produce a local field above it
average value. The competition between these two eff
leads to the double peaked distribution. It is now easy
computeP(Y) and we obtain

P~Y!.
1

A2ppqm28
(

l 524

14

Cle
2~1/2m2!~Y1 la!2

, ~17!

where
d

n

x
a
y

l
r

d

c-

e
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C245p2q4,

C2354p3q3,

C2252pq516p4q2,

C2154p5q18p2q4,

C05q6112p3q31p6, ~18!

C154pq518p4q2,

C252p5q16p2q4,

C354p3q3,

C45p4q2,

and wherem25m28pq ~numerically for a lattice spacinga
51, one findsm28.1.36!.

Equation~17! @with Eq. ~18!# is our final result. Equation
~17! is essentially the convolution of the local probabili
distribution ~which is the signature of the microstructur!
with a Gaussian distribution representing the backgrou
The width m2 of the Gaussian distributions is finite in th
infinite volume limit, in contrast with the usual case~CLT!,
where this quantity is extensive. Moreover, this quantity
zero whenp50 or p51, as expected since there is no d
order in these cases. Note thatP(Y) is invariant under the
transformp→q, q→p, andY→2Y. This indicates that the
function P(Y) is even forp5q51/2.

We can apply the same argument to the transverse fi
The total field produced by the first neighbors is equal
zero. Thus the effect of the local microstructure is zero. T
only contribution is thus the background, which is a Gau
ian distribution with zero mean and a variance given by

D5a2pq(
r .1

@Gzz~r !#25a2pq(
r .1

S 3xz

r 5 D 2

~19!

~where( r .1@Gzz#
2.1.72!. This variance is therefore of or

der a2 in agreement with@9#.
The averaged local field isE0 and the normalized field

Ei /E0 ~which is still denoted byEi in the following! is sim-
ply given byEi511Y.

B. Discussion and comparison with numerical results

Let us recall that in our calculation, two different approx
mations are made: a low polarizability expansion and
saddle-point method.

First of all, we checked that our analysis of Eq.~11! is
correct ~validity of the saddle-point method!. For this, we
studied numerically the probability distribution ofY and
compared it with the distribution we obtained analytica
@Eq. ~17!#. The results for differents values of the concent
tion p are shown in Figs. 1~a!–1~c!. The agreement is excel
lent. This shows that only the first neighbors contribute to
nonuniversal ~non-Gaussian! behavior. Let us commen
briefly these three curves. We call type-I sites the two site
z521,1 ~and x5y50! and type-II sites the four neares
neighbors lying in the (x,y) plane~this is the same denomi
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FIG. 1. Probability distributionP(Y) for differents values ofp
with a51: ~a! p50.2, ~b! p50.5, ~c! p50.8. The solid line repre-
sents the analytical result@Eq. ~17!# and the dotted line represen
the numerical simulation ofP(Y) from Eq. ~17!.
nation as in@9#!. A dipole on a type-II site creates a field a
r 50 equal to21 ~for a dipole moment equal to 1!.

~i! For p50.2 @Fig. 1~a!#, we have on the average on
dipole ~on the six neighbors!. Since there are four type-I
sites~over six! the probability is high to find this dipole on
type-II site and will produce a negative contribution to t
local field. This corresponds to the high peak belowY50.
There is, however, a small probability~equal to 1/3! that the
dipole will be on a type-I site and produce a positive fie
This explains the double peak character ofP(Y).

~ii ! For p50.5 @Fig. 1~b!#, there are approximately thre
dipoles. The most probable configuration is two dipoles lyi
on type-II sites and one lying on a type-I site. This w
contribute to the local field with a value given by 13~2!
123~21!50. This explains the one peak distribution ce
tered atY50.

~iii ! For p50.8 @Fig. 1~c!#, there are about five dipoles
The most probable configuration is three dipoles on type
sites and two dipoles lying on type-I sites. This will create
field equal to 33~21!123~2!511, which explains the
highest peak in the positive region. The lower peak cor
sponds to a less probable configuration for which the con
bution to the local field is equal to 43~21!113~2!522.

We now compare our results with known numerical r
sults @9#. We first plottedP(Ei) versusEi for different val-
ues of p @see Figs. 2~a!–2~c!#. For any concentrations, th
agreement is good, at least qualitatively. The positions of
peaks are well reproduced by our approximation. Howev
we observe slight differences. They may be attributed to
error bars in the numerical results of@9# or more probably to
the approximation~6! which assumes essentially a low p
larizability. We then plottedP(Ei) versusEi for different
values ofa @see Figs. 3~a!–3~c!#. We observe that for a low
polarizability, the approximation~6! is good, which is not
surprising since~6! is a low polarizability approximation. In
order to improve our approximation, one would need to e
pand to second order ina. It has been shown@12# that a
calculation to second order ina ~which is technically much
more involved! does not improve significantly the resul
~less than a few percent!. The agreement between our an
lytical result Eq.~17! and the numerical results@9# might
seem surprising, since Chen and Sheng did not use a
polarizability approximation. Let us make here a few co
ments. First, one can view the generalized Onsager me
~used in @9#! as separating the first neighbors contributi
~which we treated exactly at the first order ina! from the
background contribution~which we treat by a saddle-poin
method and which was treated by an effective medium c
culation in@9#!. Second, one has to study the first neighb
contribution. It can be seen that the work@9# ~which treats
this contribution exactly! is restricted to low polarizabilities
~all polarizabilities in@9# are less than 0.15!. This may ex-
plain the good agreement between our result and@9#. One
expects a worse agreement for higher polarizabilities. Mo
over, it is difficult to quantify the range of validity of ou
approximation, or equivalently the convergence radius of
expansion ina, since the spectrum of the random opera
Ĝ(r i2r j )a(r j ) is unknown. In any case, our approximatio
is expected to be valid for smalla.
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FIG. 2. P(Ei) versusEi for a50.1 and for different values o
p: ~a! p50.2, ~b! p50.5, ~c! p50.8. The quantityEi is here nor-
malized to its average value. The solid line represents the analy
result@Eq. ~17!# and the dotted line represents the numerical sim
lation of @9#.
al
-

FIG. 3. P(Ei) versusEi for different values ofa for the same
value ofp50.1: ~a! a50.01,~b! a50.1, ~c! a50.15. The quantity
Ei is here normalized to its average value. The solid line repres
the analytical result@Eq. ~17!# and the dotted line represents th
numerical simulation of@9#.
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2840 56MARC BARTHÉLÉMY AND HENRI ORLAND
Finally, we see that forE@1, the probability distribution
behaves ase2cE2

. From extreme statistics@11#, one expect a
decay likee2bEd

~d is the space dimension andc andb are
positive constants!. This discrepancy may be attributed to th
saddle-point approximation.

III. CONCLUSION

We have adressed the problem of the analytical dete
nation of the local field distribution in random dielectric
We find that for small polarizabilities it is a sum of Gaussi
distributions and is essentially the convolution of the lo
distribution~effect of the local microstructure! with a Gauss-
ian distribution which represents the background. W
checked that our study is correct and compared our res
with known numerical results. The agreement is good. In
cases, we reproduce the double peak character which a
from the existence of two main different local environmen
v.
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This method can be easily applied to the current distribut
in the RRN. This study is in progress.

It seems difficult to improve on our method, but it has t
advantage of being easy to use in other cases, such a
quasistatic case. In that case, we expect important differe
with the static case, since the dipolar field would be qu
different. Another interesting point is that usual effective m
dium theories neglect the microstructure of the medium
assuming a homogeneous local environment. It would be
teresting to incorporate the information embedded inP(Ei)
in an effective medium calculation.
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