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Local field probability distribution in random media
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We address the problem of the analytical determination of the local field distribution in random dielectrics.
This distribution was shown numerically to exhibit a double peak behavior. We have determined analytically
this distribution which is essentially the convolution of the distribution due to the first neigfitmrghe effect
of the microstructurewith a Gaussian distribution describing the background. Our results are in good agree-
ment with known numerical resultfS1063-651X97)14209-X]

PACS numbg(s): 05.40+j, 61.43—j, 77.90+k

[. INTRODUCTION proach to the calculation of the full probability distribution.
This approach could be used as a starting point for a strong
In the study of transport properties of disordered systemgisorder regime analysis. We determine analytically the
(and for nonlinear disordered systemthe random resistor probability distribution of the local fiel@which is the sum of
network(RRN) is of the utmost importance. First, it provides the fields seen by the partigldn general, when an electric
a Simp|e model for Composite media such as Conductorﬁeld is applled on a dleleCtI’IC, the local field differs from the
dielectric mixtures and exhibits a percolation transitign ~ Macroscopic field. This difference comes from the local en-
the dc case Second, it can be generalized to a large numbe¥ironment of the part|clt_a. However it is not difficult to com-
of situations such as ac properties, optical properties, et@ute the average of this local field. This average ha; been
(see for instancél]). first calcula_ted by Lorentz and Ieagls to the usgal sol_utlon for
The main approach to this problem was to determine thdhe local field and to the Clausius-Mossotti relatip).
effective conductivity of the networksee the review2] and Slnce the local environment is random, one expects the local
references thereinThe effective medium concept is already field to be random too. In 1991, Chen and Shé¢agpro-
an old one(one can find a historical review of effective me- Posed a numerical study of this probleosing a generalized
dium in[3]) and consists in replacing the heterogeneous me@nsager approagtand found a double peak distribution for
dium by a homogeneous one with the same macroscopi@e qual fle_ld. This double peak structure was also found
conductivity(this is in general possible when the observationtumerically in the context of the RRN.0]. It can be related
length is greater than the disorder correlation lengihe 10 thg existence of two different environments reIat|ve_ to the
knowledge of the effective conductivity is equivalent to theapphed field. We will return to the p'hyS|caI interpretation of
knowledge of the averaged electric field and is therefore rethis phenomenon. Up to now analytical efforts were made on
motely related to the microstructure of the medium. Morethe probability d|str|_but_|on _tal([ll] and references thergin
precisely, the usual effective medium theories neglect th&ut not on the full distribution. We propose here a perturba-
microstructure by assuming a homogeneous local envirorfiVe approach to the calculation of the full probability distri-
ment. During the past few years, the effect of the randonpution. _ ,
microstructure has been investigatasee, for exampld4]). The layout of the paper is the following. In Sec. II, we
One way to study this problem is to look at the moments ofPresent the perturbative approach to the calculation of the
the electric field. This information is of interest in many Probability distribution of the local electric field and com-
problems such as the weakly nonlinear composiese Pare it Fo previous numerlc_al results. Section Ill summarizes
[5—7] and references therginindeed, since the nonlinear the main conclusions of this work.
susceptibility is related to higher moments of the electric
field, it is much more sensitive to the fluctuations due to the 1I. PERTURBATIVE STUDY OF THE PROBABILITY
microstructure. Moreover, in the random fuse problémn DISTRIBUTION
model for dielectric breakdown and for rupture in heteroge-
neous medig the knowledge of the probability distribution
allows for the determination of very important quantities We present a perturbative approach for the calculation of
such as the macroscopic breakdown threstifida review the local field probability distribution. Note that the electric
on fracture in disordered media, see, for exam@®, Most field (as will be shown beloyis simply related to the local
of the approaches to these problem are based on numeridgld.
scaling, extreme statistiggifchitz defects. We will show that this problem reduces to the calculation
In spite of the importance of the subject there are veryof the probability distribution of a weighted sum of random
few analyses of this problem; even the weak-disorder regimeariables. We then evaluate perturbatively the probability
is not well understood. We propose here a perturbative apdistribution of such a sum.

A. Calculation
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We model here the random dielectric as a threetuation should be equal to zero if we replace the surrounding

dimensional cubic latticgwith spacinga=1) where the

nodes are occupied randomly by polarizable parti¢veish

polarizability ). We suppose that a particle is present with

probability p and absent with probability2p. The polariz-
abilities «(r) atr are independen(from site to sit¢ random
variables distributed according to a binary law

P(a(r))=pd(a(r)—a)+qd(a(r)). (1)

We apply a uniform and constant electric fidlg to this
dielectric medium. The local fielH,(r;) at a pointr; is given
by the sum of all the fields created by the other dipgths
dipoler; is excluded from the sum

E(r)=Eo+ 3 G(ri—r)p(r)), )
ri#

where the dipolar momemd(r;) at pointr; is given by
p(ri)=a(r)E(r;) €
and whereG is the dipolar tensofin real space and far#0)

3r,r,—r?s5,,
Gﬂy(r):% (4)

andG,,(r=0)=-4,,/3. The local field thus satisfies the

following integral equation:

/(1)) =Eo+ X, G(ri—r)a(r)E(r)). (5)
rp#r

The electric field is simply related to the local field by

E(r;)=E(r;) +G(0)a(r,)E(r;), whereE,(r) and a(r) are
independent random variables.

Equation(5) gives formally the local field as a function of
the disorder. It seems out of reach to solve exactly this equ
tion in order to extract the probability distribution of the
local field E;. Due to translational invariance, the disorder
averaged probability distribution is position independent an

we choose ;=0 in Eq.(5). We study Eq(5) perturbatively.
To first order ina, we have

E/(0)=Eq+ Zﬂ G(r))a(r))E,. 6)
T

medium of permittivity ey by an effective medium of per-
mittivity €. We find

e —¢€
1+(6—6*/36*)_0 ®
which is the well known Bruggeman formul&]. This shows
that, at least for the average field, the approximat@nis
not trivial and contains a lot of information. We also note
that this approximation consists of considering all dipoles
polarized along the applied field,. The same approxima-
tion, restricted to the first neighbors, was proposef®inin
order to justify the double peak character of the local field
distribution. In the following, we will study Eq(5) more
thoroughly without restricting ourselves to the first neigh-
bors.

We assume that the applied field is directed alongzhe
axis and we first look at the component of the local fielf;
denoted byE,. This component satisfies the equation

EH:EO"'r;O f(ri) a(r;)Ey, 9

where

2__ 2

f(1)=C.dn)= "5

r

(10

Equation (9) is the basic equation we study here. Let us
introduce the quantityy given by

Y= f(r)a(r). (11)
r;#0

The problem is thus reduced to the determination of the

apirobability distribution of the quantity. This quantity is the

sum of random binary variablegr) weighted byf (r) which
is a decreasing function of(roughly like 1f3). The quantity
remains distributed sincé decreases sufficiently rapidly
so that the central limit theoref€LT) cannot apply. This is
easily seen by the following two extreme cag@sThe quan-
tity f is local, for exampld is nonzero only for one value of
r. In this casey is equal(up to a constantto a(r) and will
therefore be a random binary variablg) The quantityf is
approximately constant. The CLT can therefore apply ¥nd

At first sight, this approximation seems too simple but weyjj|| be distributed according to a Gaussian law with a rela-

will show that it is surprisingly accurate, at least for the tye dispersion varying like 4/N, whereN is the number of
average field. To discuss this point, let us assume that thgjnoles.

dielectric material has permittivitg, and the particles have

a permittivity e. In this case, the polarizability atreads(see,
for example,[3])

3[e(r)— €]

2ept€(r) ™

a(r)=

Our present case is intermediate, since at fixéte num-
ber of dipoles is of order? and the total contribution of this
shell is of order?x 1/r3~1/r, which is not integrable. Thus
sufficiently far away from the origin, the variable associated
to a shell is given by the CLT. We thus expect a contribution
due to the first shellthe first neighborsand a Gaussian
contribution coming from all other shells. This is the central

It is then easy to compute the average fluctuation of the totadrgument which allows us to study the probability distribu-

field SE=E—Eg=a2X,G(r)E, to first order ina [where the

bar denotes the average over the distributibg. This fluc-

tion of Y, namely,P(Y).
From Eq.(11), the expression foP(Y) is



56 LOCAL FIELD PROBABILITY DISTRIBUTION IN . .. 2837

_ n2n4
P(Y):J 3—" elkY+ 2y sonlpe M al (19 Coampan
" C_3=4p°®,
Let us note here that if is constant the sum reduces to a
- : C_,=2pq°+6p*g?
factor N which allows us to use a saddle-point method and 2 '

leads to the usual Gaussian distributi@L.T).

— AnS 244
Following the preceding arguments, we divide the sum in C-1=4p>q+8p°q’,

two parts, Co=0q%+12p%q°+p®, (18
2 |n[p—ikaf(ri)+q]:|; In[p~ ket 4 q] C,=4pqg°+8p“*g?,
ri#0 rij=1

C,=2p°q+6p%q*,
n | ~ikaf(r) 4 g7
%1 n[p ql

13

Cs=4p3q?,

C,=p*d?,
where the first sum of the right-hand side is over the first six ) ] ]
neighbors. We keep this first sum in the integral and apply &nd whereu,=mypq (numerically for a lattice spacing
saddle-point method to the second sum. Let us briefly justify=1, one findsm;=1.36.
this point. The second term can be written as Equation(17) [with Eq. (18)] is our final result. Equation
(17) is essentially the convolution of the local probability
ikaf(r ke distribution (which is the signature of the microstructure
\ri%l In[p~" f<r')+(ﬂ:5h;|5n N(m)in[p~"<n+q], with a Gaussian distribution representing the background.
(14  The width u, of the Gaussian distributions is finite in the
infinite volume limit, in contrast with the usual caggLT),
where N(n) is the number of sites belonging to the shell where this quantity is extensive. Moreover, this quantity is
numbern (we mean here by shell the positions in space forzero whenp=0 or p=1, as expected since there is no dis-
which f has a constant valb@nd wheref, is the value off order in these cases. Note tHa(Y) is invariant under the
on this shell. We assume that all thé$én) are sufficiently  transformp—q, g—p, andY— —Y. This indicates that the
large in order to enable the use of the saddle-point methotlinction P(Y) is even forp=q=1/2.
[N(n) is roughly varying liken?]. The saddle point is &k We can apply the same argument to the transverse field.
=0. This leads to The total field produced by the first neighbors is equal to
zero. Thus the effect of the local microstructure is zero. The

ket 4 ikaf ) only contribution is thus the background, which is a Gauss-
P(Y)=] 5—(pe ""+q)"(pe "*2+q) ian distribution with zero mean and a variance given by
« elkY—(K2I2m)pg (15) ) . 3xz\?
' A=a®pa2, [GzAN=a’pa | T+ (19)

where
(wher2e2r>1[GZgz~—~ 1.72. This variance is therefore of or-
. 2 der a“ in agreement witf9].
mZ_‘r?ﬂ [f(r)] (16 The averaged local field i, and the normalized field
E,/Eq (which is still denoted byE, in the following) is sim-
andf,=—1 is the value ofG,, for the four dipoles in the Pply given byE;=1+Y.
plane perpendicular to the axis andf,=2 is the value of
G, for the two first neighbors on theaxis. The fact thaf, B. Discussion and comparison with numerical results
andf, have different signs explains the double peak charac-
ter of P(Y). Indeed, the local environment comprising m
mainly dipoles in the X,y) plane will produce a negative
field and therefore a value of the local field lower than its
average. On the other hand, the local microstructure with th
dipoles on thez axis will produce a local field above its
average value. The competition between these two effec
leads to the double peaked distribution. It is now easy t
computeP(Y) and we obtain

Let us recall that in our calculation, two different approxi-
ations are made: a low polarizability expansion and a
saddle-point method.

First of all, we checked that our analysis of Eql) is
Borrect (validity of the saddle-point methadFor this, we
studied numerically the probability distribution of and
t(',Sompared it with the distribution we obtained analytically
c[Eq. (17)]. The results for differents values of the concentra-
tion p are shown in Figs.(®-1(c). The agreement is excel-
a lent. This shows that only the first neighbors contribute to the

1 2 Cle—(1/2p.2)(Y+Ia)2 (17) nonuniversal (non-Gaussian behavior. Let us comment
V2mpgm, 1554 ’

P(Y)=
() briefly these three curves. We call type-I sites the two sites at
where neighbors lying in theX,y) plane(this is the same denomi-

z=-1,1 (and x=y=0) and type-ll sites the four nearest
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FIG. 1. Probability distributiorP(Y) for differents values op
with a=1: (@) p=0.2,(b) p=0.5,(c) p=0.8. The solid line repre-
sents the analytical resylEq. (17)] and the dotted line represents
the numerical simulation dP(Y) from Eq. (17).

nation as in9]). A dipole on a type-Il site creates a field at
r=0 equal to—1 (for a dipole moment equal to)1

(i) For p=0.2 [Fig. 1(a@], we have on the average one
dipole (on the six neighbods Since there are four type-Il
sites(over siX the probability is high to find this dipole on a
type-1l site and will produce a negative contribution to the
local field. This corresponds to the high peak belgw 0.
There is, however, a small probabilifgqual to 1/3 that the
dipole will be on a type-I site and produce a positive field.
This explains the double peak characterPgfy).

(i) For p=0.5[Fig. 1(b)], there are approximately three
dipoles. The most probable configuration is two dipoles lying
on type-ll sites and one lying on a type-l site. This will
contribute to the local field with a value given byx12)
+2X(—1)=0. This explains the one peak distribution cen-
tered aty=0.

(i) For p=0.8[Fig. 1(c)], there are about five dipoles.
The most probable configuration is three dipoles on type-l|
sites and two dipoles lying on type-I sites. This will create a
field equal to X(—1)+2%(2)=+1, which explains the
highest peak in the positive region. The lower peak corre-
sponds to a less probable configuration for which the contri-
bution to the local field is equal toXd(—1)+1X(2)=—2.

We now compare our results with known numerical re-
sults[9]. We first plottedP(E,) versusk, for different val-
ues of p [see Figs. @)—2(c)]. For any concentrations, the
agreement is good, at least qualitatively. The positions of the
peaks are well reproduced by our approximation. However,
we observe slight differences. They may be attributed to the
error bars in the numerical results[@&] or more probably to
the approximation(6) which assumes essentially a low po-
larizability. We then plotted®(E,) versusk, for different
values ofa [see Figs. @)—3(c)]. We observe that for a low
polarizability, the approximatiori6) is good, which is not
surprising since®6) is a low polarizability approximation. In
order to improve our approximation, one would need to ex-
pand to second order im. It has been showh12] that a
calculation to second order im (which is technically much
more involved does not improve significantly the results
(less than a few percentThe agreement between our ana-
Iytical result Eq.(17) and the numerical resulf®] might
seem surprising, since Chen and Sheng did not use a low
polarizability approximation. Let us make here a few com-
ments. First, one can view the generalized Onsager method
(used in[9]) as separating the first neighbors contribution
(which we treated exactly at the first order an from the
background contributiofiwhich we treat by a saddle-point
method and which was treated by an effective medium cal-
culation in[9]). Second, one has to study the first neighbors
contribution. It can be seen that the wd (which treats
this contribution exactlyis restricted to low polarizabilities
(all polarizabilities in[9] are less than 0.25This may ex-
plain the good agreement between our result g#d One
expects a worse agreement for higher polarizabilities. More-
over, it is difficult to quantify the range of validity of our
approximation, or equivalently the convergence radius of the
expansion ine, since the spectrum of the random operator
G(ri—r;)a(r;) is unknown. In any case, our approximation
is expected to be valid for smadl.



56 LOCAL FIELD PROBABILITY DISTRIBUTION IN . .. 2839

P(E)))
P(E)) ‘ ! I _
3.00 |
L 4 10.00
200 ]
- 5.00 |
1.00 - i
0.00 - - 0.00
L. | | L E” .
(a) 0.50 1.00 1.50 (a) 060
P(E))
|
6.00 —
5.00 -
- 4.00 ~
| 3.00
2.00
] 1.00
-1 0.00
I | L E } ‘ ‘ g
() 0.50 1.00 1.50 I (b) 0.50 100 150 [
P P(E
Ep : ‘ : . Ep. .
L | 400 ~ i
3.00 - 4 L 4
s - 3.00 - -
2,00 | - B ]
7 2.00 |- .
1.00 |- _ - -
L i 1.00 - .
0.00 0.00 - - |
I— Lo | | ﬁ E” L1 I I I | E”
(c) 0.50 1.00 1.50 (c) 0.00 0.50 1.00 1.50 2.00

FIG. 3. P(E,) versusk, for different values ofa for the same
value ofp=0.1: (a) =0.01,(b) «=0.1, (c) «=0.15. The quantity
?EH is here normalized to its average value. The solid line represents
e analytical resulfEq. (17)] and the dotted line represents the
numerical simulation of9].

FIG. 2. P(E) versusk, for «=0.1 and for different values of
p: (@ p=0.2,(b) p=0.5,(c) p=0.8. The quantityg, is here nor-
malized to its average value. The solid line represents the analytic
result[Eq. (17)] and the dotted line represents the numerical simu-
lation of [9].
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Finally, we see that foE>1, the probability distribution This method can be easily applied to the current distribution

behaves as™°E’. From extreme statistidd 1], one expect a in the RRN. This study is in progress.
decay likee PE° (d is the space dimension andandb are It seems difficult to improve on our method, but it has the

positive constanjs This discrepancy may be attributed to the @dvantage of being easy to use in other cases, such as the

saddle-point approximation. guasistatic case. In that case, we expect important differences
with the static case, since the dipolar field would be quite
IIl. CONCLUSION different. Another interesting point is that usual effective me-

dium theories neglect the microstructure of the medium by

We have adressed the problem of the analytical determiagssuming a homogeneous local environment. It would be in-
nation of the local field distribution in random dielectrics. teresting to incorporate the information embedde(ﬁi(rEH)
We find that for small polarizabilities it is a sum of Gaussianjn an effective medium calculation.
distributions and is essentially the convolution of the local
distribution(effect of the local microstructuyevith a Gauss-
ian distribution which represents the background. We ACKNOWLEDGMENTS
checked that our study is correct and compared our results
with known numerical results. The agreement is good. In all We gratefully acknowledge M. Bauer, D. J. Bergman, and
cases, we reproduce the double peak character which aris€ Parcollet for useful discussions. One of (.B.) also
from the existence of two main different local environments.acknowledges the GDR “POAN.”
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